Exercise 1

Solve the given ODEs:

$$
y^{\prime \prime}+4 y=0, y(0)=0, y^{\prime}(0)=1
$$

Solution

This is a linear ODE with two initial conditions, so the Laplace transform can be used to solve the problem. The Laplace transform of a function $f(x)$ is defined as

$$
F(s)=\mathcal{L}\{f(x)\}=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

so the derivatives of $f(x)$ transform as follows.

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime}(x)\right\} & =s F(s)-f(0) \\
\mathcal{L}\left\{f^{\prime \prime}(x)\right\} & =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Take the Laplace transform of both sides of the ODE.

$$
\mathcal{L}\left\{y^{\prime \prime}+4 y\right\}=\mathcal{L}\{0\}
$$

Use the fact that the operator is linear.

$$
\mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\{y\}=0
$$

Use the expressions above for the transforms of the derivatives.

$$
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 Y(s)=0
$$

Solve the equation for $Y(s)$.

$$
\begin{gathered}
\left(s^{2}+4\right) Y(s)=s y(0)+y^{\prime}(0) \\
Y(s)=\frac{s y(0)+y^{\prime}(0)}{s^{2}+4}
\end{gathered}
$$

Here we use the initial conditions, $y(0)=0$ and $y^{\prime}(0)=1$.

$$
Y(s)=\frac{1}{s^{2}+4}
$$

Now that we have $Y(s)$, we can take the inverse Laplace transform of it to get $y(x)$.

$$
\begin{aligned}
y(x) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4}\right\}
\end{aligned}
$$

Looking in Table 1.1 on page 24, we see that this will yield a sine function. We need a 2 to be in the numerator, so place a factor of $1 / 2$ in front.

$$
=\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}
$$

Therefore,

$$
y(x)=\frac{1}{2} \sin 2 x
$$

